

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY

Approved by AICTE, Permanently Affiliated to JNTU Kakinada, NAAC Accredited with 'A' Grade, ISO 9001:2008 Certified,
Nambur (V), Pedakakani (M), Guntur (Dt.), Andhra Pradesh – 522 508, www.vvitgumtur.com
DEPARTMENT OF CIVIL ENGINEERING

R13 GRAND CO-PO-PSO MATRIX

		CO1	An ability to read and comprehend English stories and texts
		CO2	ability to improve listening skills particularly related to technical English and to improve life skills
		CO3	An ability to critically respond in English to a real life situations and to speak in English without inhibition and grammar
		CO4	An ability to improve essential grammar necessary for English communication and to write effectively using appropriate format
R13101	ENGLISH-I	CO5	An ability to expand vocabulary range and use it effectively and respond to real life situations and An ability to transfer verbal information into nonverbal information and vice versa
R1	ENG	CO6	An ability to improve life skills and core skills necessary for effective communication

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01						2		2	3	3		3	2	
C02						2		2	3	3		3	3	2
C03						2		2	3	3		3		
C04						2		2	3	3		3		2
C05						2		2	3	3		3	3	
C06						2		2	3	3		3	2	1

		CO1	Able to	solve t	first ord	er ordir	nary Diff	erentia	l equa	ations	and t	heir app	olication	ns.		
		CO2	Able to	solve l	higher o	rder or	dinary d	ifferen	tial eq	uatio	ns					
		соз			Laplace ng Lapla		rms and sforms.	solve i	nitial	value	proble	ems in o	ordinary	/ differe	ential	
	SS-I	CO4	Able to	learn l	Partial d	ifferent	tiation									
75		CO5	Able to	Solve	first ord	er parti	ial differ	ential e	quati	ons						
R13102	Ž	CO6	Able to													
2	MATHEMATIC		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	Μ	C01	3	2	1						3					
		C02	3	3	3						3					
		C03	2	3	3						2					
		C04	3	3	2						3					
		C05	3	3	3						2					
		C06	3	2	1						2					

		CO1	Able to know about water used in industries (boilers etc.) and for drinking purposes and Apply modern methods of softening of hard water to avoid boiler troubles , construction and working of lime soda process
		CO2	Understanding the principles, Construction and working of galvanic cells, electrode potentials, concentration cells, rechargeable batteries and Analyze various types of fuel cells
		соз	Apply the knowledge of electro chemistry to corrosion, distinguish various types of corrosions and able to solve corrosion problems
	TRY	CO4	Able to explain about synthesis, physical and mechanical properties, compounding and reframing & fabrication of polymers, plastics and elastomers and Applications of fibre reinforced polymers along with conducting polymers
	R13104 ENGG.CHEMISTRY	CO5	Recognize specific characteristic properties of fuels including calorific value determination , Ranking and Analysis of coal by proximate and ultimate method
	ENGG	CO6	Use of advanced materials i.e.nano materials, liquid crystals, super conductors and Illustrate the applications of cleaner and greener synthetic methods adapt in industries for healthy living
1	I .	1	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3		3		1			3	3	3	1	3	2	
C02	3		3		2			3	3	3	2	3	3	2
C03	2		3		2			3	3	2	2	2		
C04	3		2		1			3	3	1	2	3		2
C05	3		3		1			3	3	2	1	3	3	
C06	3		3		1			3	2	1	2	3	2	1

		CO1	Able to Design algorithmic solutions to problems and implementing algorithms inC.
		CO2	Able to Illustrate branching, iteration and data representation using arrays.
	IMING	CO3	Able to Implement modular programming and recursive solution formulation.
	Α	CO4	Able to Comprehend pointers and dynamic memory allocation.
05	GR		Able to Implement user defined data types like structures and unions in C.
R13105	8	CO6	Able to Comprehend file operations.
2	2		

벁							_								
15		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
MP	C01	1	1	3	1	1								3	3
8	C02	2	2	2	2									3	2
	C03	2	2	3	2	2								3	2
	C04	2	2	2	3	2								3	3
	C05	1	2	3	2	2								3	2
	C06	1	2	3	2	2								3	2

CO1	Able to Understand The concepts of the ecosystem
CO2	Able to Understand The natural resources and their importance

Able to learn The biodiversity of India and the threats to biodiversity ,and Apply conservation CO3 practices **ENVIRONMENTAL STUDIES** Able to learn Various attributes of the pollution and their impacts CO4 CO5 Able to Understand Social issues both rural and urban environment Able to Understand About environmental Impact assessment and Evaluate the stages involved in CO6 R13106 ΕIΑ

ΞL															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
≦ [C 01	3			3	2		3	3			3	2	2	
ENVIRO	C 02	2			2	2		2	2			3	2	3	2
_	03	3			3	2		2	2			3	3		
G	C 0 4	2			3	2		2	2			3	3		2
G	C 0 5	3			1	3		3	3			3	2	3	
[C06	3			3	3		3	3			2	2	2	1

		CO1	Able to explain the concepts of force and friction, direction and its application.
		CO2	Able to explain the application of free body diagrams. Solution to problems using
		CO3	graphical methods and law of triangle of forces.
		CO4	Able to explain the concepts of centre of gravity.
R13110	CHA	CO5	Able to explain the concepts, moment of inertia and polar moment of inertia including
213 .	ME	CO6	transfer methods and their applications.

_						- - · · · · · · · ·									
99															
ENG		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	3	2	1						2				2	
	C02	2	2	1						2				3	2
	C03	2	1	1						2					
	C04	2	1	2						2					2
	C05	2	2	1						1				3	
	C06	3	2	1						1				2	1

۱.	CO1	Ability	to anal	ysis a to	pic of d	liscussio	n & rea	iding t	to it.						
AB-	CO2	Ability	to part	icipate i	n discus	ssion & i	nfluend	ce the	m.						
LS L	соз	Ability	to com	municat	te ideas	effectiv	ely.								
<u> </u>	CO4	Ability	to pres	ent opir	nions co	herently	y withir	n a sti _l	pulate	ed time	e.				
S	CO5	Ability	to spea	k clearly	у & соо	rdinate	with th	em.							
وَ	CO6	Ability	to impr	ove upo	on Engli	sh langu	age pro	onunc	iation	١.					
Ι¥															
-															
١z		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
MON	C01	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1 2	PSO2
OMMUNI	C01 C02	PO1	PO2	PO3	PO4	PO5		PO7				PO11	_		PSO2 2
H COMMUNICATION		PO1	PO2	PO3	PO4	PO5	2	PO7	2	3	3	PO11	3	2	
NGLISH COMMUNI	C02	PO1	PO2	PO3	PO4	PO5	2	PO7	2	3	3	P011	3	2	

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
_	C01						2		2	3	3		3	2	
∑	C02						2		2	3	3		3	3	2
ر	C03						2		2	3	3		3		
	C04						2		2	3	3		3		2
ב ב	C05				·		2		2	3	3	·	3	3	

i	, ш					1	1	ī				1			•		
		C06						2		2	3	3		3	2	1	
	_	1	1														
		CO1	Able to	o under	stand w	ater qu	ality and	alysis.									
						_				_	_						
	≽	CO2	Able to	o under	stand si	gnificar	ice of po	otentio	metric	&cor	nducto	metric	titratio	ns.			
	P	CO3	Able to	o analvz	ze redox	ometri	titratio	ns.									
	RA	CO4	+				cool dri										
	80	CO5	_			•	/itamin-o		nt in c	apsul	es.						
115	\ \ \	CO6	Able to	o deteri	mine coi	ncentra	tion of u	ınknow	n solu	itions	by co	lorimet	er.				
R13115	STR		•														
~	ENGG.CHEMISTRY LABORATORY		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	뿡	C01	3		3		1			3	3	3	1	3	2		
	99	C02	3		3		2			3	3	3	2	3	3	2	
	Ë	C03	2		3		2			3	3	2	2	2			
		C04	3	2 1 3 3 1 2 3 2 3 1 3 3 2 1 3 3													
		C05	3	3 1 3 3 2 1 3 3 3 1 3 2 1 2 3 2 1													
		C06	3	3 1 3 2 1 2 3 2 1													
	l	1	1	e to Design solutions to the various problems in the field of computerscience.													
		CO1	Able to														
		CO2	Ablo t	a Impla	mont th	0.0000	nts of a	rrave a	ad stri	nac							
		CO2	Able to	Jilipie	ment th	e conce	epts of a	i i ays a	iu sti i	iigs.							
		соз	Ability	to Ana	lyze the	concep	ts of mo	odular p	orogra	mmin	ig and	develo	p soluti	ons.			
	AB	CO4		•	ment Pr	ograms	with po	inters	and co	mpre	hend	the dyn	amic m	emory	allocati	on	
	9		function	ons.													
16	AMMING LAB	CO5	Able to	o Devel	op progi	rams th	at perfo	rm ope	ration	ıs usir	ng deri	ived da	ta types	6			
13116	Α		A 1. 1 1				·		· I		. C·1						
~	19 18	CO6	Able to	mpie	ment pr	ograms	for data	transi	ers be	twee	n mes						
	C.PROGR		PO1	PO2	PO3	PO4	PO5	PO6	PO7	DO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	ن	C01	1	1	3	1	1	100	1707	F 08	103	1010	POII	PUIZ	3	3	
		C02	2	2	2	2	-		\vdash		\vdash	-			3	2	
		C03	2	2	3	2	2		\vdash		\vdash				3	2	
		C04	2	2	2	3	2								3	3	
		C05	1	2	3	2	2								3	2	
		C06	1	2	3	2	2								3	2	
		CO1	An abi	litv to r	ead and	compr	ehend E	nglish s	tories	and t	texts						
				,													
		CO2	ability	to impi	ove liste	ening sl	kills part	icularly	relate	ed to	techni	cal Eng	lish and	l to imp	rove life	e skills	
												1 -					
	=	соз		•	•	•	d in Engl	iish to a	real l	ite sit	uation	ns and t	o speak	(in Engl	ish with	nout	
	ISH		+		gramm		.1				10 - 1				•••		
	ENGLISH-II	CO4		•	•		al gramr	nar ned	cessar	y tor E	nglish	n comm	unicatio	on and t	to write		
	🖆		errecti	very usi	ng appr	opriate	rormat										

201		CO5	An abi	lity to e	xpand v	ocabula	ary rang	e and u	se it e	effecti	vely a	nd resp	ond to	real life	situatio	ons
R13201		CO6	An abi	lity to ir	mprove	life skill	s and co	ore skill	s nece	ssary	for ef	fective	commu	ınicatio	n	
			PO1	PO2	PO3	PO4	PO5	PO6	DO7	PΩS	PO9	PO10	PO11	PO12	PSO1	PSO2
		C01	101	102	103	104	103	2	107	2	3	3	rom	3	2	1302
		C02						2		2	3	3		3	3	2
		C03						2		2	3	3		3		
		C04						2		2	3	3		3		2
		C05						2		2	3	3		3	3	
		C06						2		2	3	3		3	2	1
		CO1 CO2 CO3	An Abi	lity to C	Compute	an Eig	n of line en value	s and e	eigen v	ector/	·S				solids.	
			1.1.1.1		1 6											
	=	CO4					egral wit				5					
	\ <u>2</u>	CO5	Able to	Differe	entiate	ne scar	ar and v	ector i	unctio	ns.						
R13202	MATHEMATICS-III	CO6	Able to	Under	stand li	ne, surf	ace and	volum	e inte	grals a	ind Es	tablish	vector i	ntegral	theore	ms.
_	₽		PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PSO2
							. 03					. 010	. О			
	Ž	C01		_												
	Σ	C01	3	2	1				. 07		3				2	
	Σ		3	2	1											2
	Ž	C02	3 3 2	3	1 3 3						3 3 2				2	2
	Ž	C02 C03	3	2	1						3 3 2 3				2	
	Ä	C02 C03 C04	3 3 2 3	3 3	1 3 3 2						3 3 2				3	2
	Ž	C02 C03 C04 C05	3 3 2 3 3 3 Able to physical	2 3 3 3 2 Designal Optic	1 3 2 3 1 n an inst		to enha		e reso	lution	3 2 3 2 2				2 3 2 cation in	2 2 1
	2	C02 C03 C04 C05 C06	3 3 2 3 3 3 Able to physic.	2 3 3 3 2 Designal Optical	1 3 2 3 1 an an inst	ne conc	to enha	asers	e reso	lution	3 2 3 2 2				2 3 2 cation in	2 2 1
	Y Y	C02 C03 C04 C05 C06	3 3 2 3 3 3 Able to physic. Able to proper	2 3 3 3 2 Designal Option	1 3 2 3 1 an an instants.	ne conce	epts of I aterials. epts of I	_asers	e reso	olution	3 2 3 2 2 a for it	nerent	sources	and t	3 2 cation in	2 2 1
	GG. PHYSICS M.	C02 C03 C04 C05 C06	3 3 3 3 3 Able to physic. Able to proper Able to their A Able to	2 3 3 3 2 Designal Option Office ty related Under	1 3 2 3 1 an an instant of the stand	ne concerne	epts of I aterials. epts of I	asers Magnet	e reso	olution n-linea	3 2 3 2 2 n for it	nerent Superco	sources	and to	2 3 2 cation in	2 2 1

Z	2
Ц	Ц

CO6

Able to Know the Classification of Semiconductors and Apply their concepts in electronic transport Mechanism for LEDs, Photo conductors and solar cells.

1														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	3	2	2			3					3	2
C02	2	2	2	3	2			3					3	2
C03	3	2	2	2	3			3						2
C04	2	2	3	3	3			2					3	2
C05	3	2	3	2	2			3					1	1
C06	3	3	2	2	1			3					2	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	1						3				2	
C02	3	3	3						3				3	2
C03	2	3	3						2					
C04	3	3	2						3					2
C05	3	3	3						2				3	
C06	3	2	1						2				2	1

		CO1	Able to introduce the basic philosophy of morals, values and ethics to the students that is relevant to resolving moral issues in engineering
		CO2	Able to impart reasoning and analytical skills needed to apply ethical concepts to engineering decisions
	IN VALUES	соз	Able to identify the moral issues involved in both management and engineering areas, and to provide an understanding of the interface between social, technological and natural environments
80	& HUMAN	CO4	Able to understand the unethical errors committed by the engineers in the implementation of the engineering projects.
R13208	ETHICS	CO5	Able to minimize the occupational crimes in the corporate sector by the budding engineers and make them uncorrupted.
	SIONAL	CO6	Able to Focus on intellectual property rights and ethical engineering.
	Sic		

PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PS01 |

3

PSO₂

PO₂

PO3

PO4

PO5

PO1

۱ -	C02	2		2	1		2		3	2	1	2
	C03	1		3	1		2		1	1	2	1
	C04	2		1	2		2		1	1		2
[C05	2		1	1		3		1	1		1
Ι	C06	1		1	2		3		1	1	1	2

		CO1	Able to understand different scales used in industry and draw various curves.
		CO2	Able to recognize principles of projections to draw orthographic projections.
		соз	Able to interpret the projection principles to draw projections of straight lines.
		CO4	Able to understand the various ways to draw projection of planes.
R13209	DRAWING	CO5	Able to draw projections of solids by applying principles of orthographic projections and isometric projections
R1	ENGG.	CO6	Able to convert isometric views into orthographic views and orthographic views to isometric views

1														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2						1			1	1	
C02	3	2	2						1			1	1	2
C03	3	2	2						1			1	1	2
C04	2	2	2						1			1	2	2
C05	2	2	3						1			1	3	1
C06	2	2	3						1			1	1	1

=	CO1	Ability to analysis a topic of discussion & reading to it.
AB -	CO2	Ability to participate in discussion & influence them.
SL	соз	Ability to communicate ideas effectively.
≓	CO4	Ability to present opinions coherently within a stipulated time.
Š	CO5	Ability to speak clearly & coordinate with them.
	CO6	Ability to improve upon English language pronunciation.
Ä		

Ĭ		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
₹	C01						2		2	3	3		3	2	
<u>S</u>	C02						2		2	3	3		3	3	2
Ÿ	C03						2		2	3	3		3		
Ė	C04						2		2	3	3		3		2
S	C05						2		2	3	3		3	3	
ш	C06		·				2		2	3	3		3	2	1

Able to under stand basic knowledge fphysics & experimental experience like sound, acceleration & time.

Able to understand basic electronics & experimental experience of electrical circuits.

CO3 Able to understand electromagnetism and experimental experience.

CO4 Able to understand the light properties & experimental experience of interference & diffraction.

CO5 Able to understand basic electronics & experimental experience of electrical circuits.

CO6 Able to understand electromagnetism and experimental experience.

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02

Ξ.															
בו בו		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
- 1	C01	3	3	3	2	2			3					3	2
	C02	2	2	2	3	2			3					3	2
	C03	3	2	2	2	3			3						2
	C04	2	2	3	3	3			2					3	2
	C05	3	2	3	2	2			3					1	1
	C06	3	3	2	2	1			3					2	1

		CO1	To select suitable carpentry tools to prepare different types of joints.
		CO2	To identify tools required in the fitting operation to perform joint preparations.
	WORKSHOP	CO3	To understand the process of making different objects with thin sheets using proper tin smithytools.
	WOR	CO4	To differentiate single phase, 3 phase wiring connections.
91	& IT	CO5	Identify the basic computer peripheral and gain sufficient knowledge on assembling and disassembling aPC.
R13216	WORKSHOP	CO6	Learn the installation procedure of Windows and Linux OS, Acquire knowledge on basic networking infrastructure and acquire knowledge on basics of internet and worldwide web.

9															
ERIN		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
_	C01	3	3				2		2				3	2	
ENG	C02	3	3				2		2				3	3	2
ш	C03	3	3				2		2				3		
	C04	3	3				2		2				3		2
	C05	3	3				2		2				3	3	
	C06	3	3				2		2			·	3	2	1

	CO1	Able to analyze the various electrical networks
	CO2	Able to understand the operation of DC machines,3-point starter and conduct the swinburne`s and speed control Tests
EERING	соз	Able to analyze the performance of Transformer

	S ENGIN	CO4	Able to explain the operation of Alternator and 3-phase induction Motor
RT21011	TRONIC	CO5	Able to analyze the operation of half wave, Full wave rectifiers and OP-AMPs
RT	L &	CO6	Able to explain the single stage CE amplifier and concept of feedback amplifier
	S		

<u>∪</u>															
CTR		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
EE	C01	3	2	2										3	
_	C02	3	2	2	2		1						1	3	2
	C03	3	2	3	2		1						1	2	3
	C04	2	2	2	2		1						1	2	2
	C05	3	2	1	1									3	1
	C06	3	2	1	1									1	1

		CO1	Able to Distinguish between random variables pertaining to discrete and continuous distribution system.
	CS	CO2	Able to Compute moments and moment generating functions of various distributions.
	IST	CO3	Able to Construct the probability distribution of a random variable, based as real-world situation,
	ΓAΤ	CO4	Able to Apply and analyzing hypothesis testing in structure engineering decision and making
21012	& ST	CO5	Able to Design and construct engineering experiments involving single factor and double factor
121		CO6	Able to Understand the role of statistical tools in quality improvement.
_			

12	ΙÉ	-	/ IDIC II	Onaci	staria ti	ic roic (or statist	ticai tot	713 111 (quant	y iiiipi	OVCITICI	10.			
RT2	I≝															
	3AB		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	PROBA	C01	3	3	1	2	1									
	Ь	C02	3	1	1											
		C03	3	3	3	3									2	
		C04	3	2	2	1										3
		C05	3	2	2	3										3
		C06	3	1	1	2										

		CO1	To understand behavior of materials under loading and support conditions.
		CO2	Identify maximum BM and SF under various loading conditions using BM and SFD.
	η.	соз	Analyze bending stresses developed in beams due to various loadings.
	MATERIALS-	CO4	Analyze shear stresses and able to draw distribution on various cross sections.
T21013	OF MAT	CO5	Analyze stresses across section of thin cylinders.

STRENGTH CO6 Analyze stresses across section of thick cylinders. PO1 PO₂ **PO3 PO4 PO5** PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO₁ C01 1 2 1 1 C02 2 2 2 2 C03 3 2 1 2 C04 3 2 2 2 C05 2 2 2 C06 2 2 2 2 CO1 Know the knowledge of basic building materials and their importance. CO2 masonry.

BUILDING MATERIALS AND CONSTRUCTION CO5

CO6

RT21014

To Understand the course pattern in masonry construction including stone masonry and brick To know the importance of lime and cement, their usage and different types used in various соз constructions. CO4 To learn the importance of various building components.

To know the different types of damp proofing materials, plastering, pointing, paints and varnis

PSO₂

2

To understand the classification of aggregates, sieve analysis and moisture content usually required in building construction.

Ξ.															
=		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
6	C01	2	2	1										2	
	C02	2	1												
	C03	2	1												
	C04	2												1	
	C05	2					2								
	C06	2	1												

		CO1	To demonstrate the basic surveying skills
		CO2	To use various surveying instruments.
		CO3	To perform different methods of surveying
		CO4	To apply geometric and trigonometric principles to basic surveying calculations.
		CO5	To compute various data required for various methods of surveying.
RT21015	URVEYING	CO6	To understand the different methods for calculation of areas and volumes of an irregular boundaries

S															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	2													2
	C02	2			2	2									2
	C03	3			2										2
	C04	3			2										2

2

3

3

C05

C06

3

		C01	To und	erstand	d the inf	luence	of the fl	uid pro	pertie	s in st	atic c	onditio	n and d	ynamic	motion		
		C02	To esti	mate h	ydrostat	ic force	es on sub	omersik	le hy	drauli	c struc	ctures.					
		C03			•		damenta lysis of f	•	•	and ed	quatio	ns like I	Eulers, I	Bernoul	is and		
	S	C04	To und	o understand behavior of fluids in Laminar and Turbulent conditions.													
ی	ANI	C05	To mea	o measure the quantity of flow in pipes and tanks.													
RT21016	MECH	C06	To find the impact of Boundary layer on the moving vehicles and estimate the fluid resistancy to the motion of the vehicles.														
_	OID.																
	긥		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
		C01	3	2											2		

-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2											2	
C02	3	2											2	
C03	3	2											2	
C04	3	2	2										2	
C05	3	2											2	
C06	3	2											2	

ORK- 1	C	CO2	Studer	nt shoul nt shoul	d be abl	e to fol	he Eleva low the ow the v	Princip	les of	surve	ying f	or data					
		04	Studer	Student should be able to draw prepare plans and maps													
}	} -																
RT21017 NG FIFI D	╛├																
	5 		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
[01	3				2	3		3	3	3	3	2	3	3	

NGF		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Ę	C01	3				2	3		3	3	3	3	2	3	3
₹	C02	2				3	3		3	3	2	3	2	2	3
ಶ	C03	2				2	3		3	3	2	3	2	3	3
	C04	2				2	3		3	3	3	3	2	2	3

Able to conduct experiments, acquire data, analyze and interpret data

Able to determine the behaviour of structural elements, such as bars, columns subjected to CO2 tension, compression, shear and torsion by means of experimtens. STRENGTH OF MATERIALS LAB Able to determine the behaviour of simply supported, cantilever, continuous beams subjected to CO3 Able to conduct experiments on tests like hardness test, spring test and impact test CO4 CO5 Able to use the electrical resistance strain gauges

RT21018

_															
9		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
E E	C01	3	2		2	2				2				2	
Ž	C02	3	2	3	2	2				2				2	
STR	C01 C02 C03	3	2	3	2	2				2				2	
	CO4	3			2	2								2	
	C05	3	2		2	2									

		CO1	Implement various building bye laws during construction.
		CO2	Design and planning various residential and commercial buildings.
	DRAWING	соз	Design and planning hospital and public buildings.
	AND DRA	CO4	Understand the sign conventions and brick bonds and an ability to use them while construction of a building.
RT22011		CO5	Planning and Drawing of building components.
R	G PLANNING	CO6	Planning and Drawing of residential and public buildings.

5 L															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
] ۱	C01	2					2					2			2
	C02	2	2											2	3
	C03	2	2											2	3
	CO4	2				3					2				
	C05	2				3					2			2	2
	C06	3	2	2		3					2			2	3

CO1	Able to Introduce Managerial Economics to engineering students, concepts of demand like law determinants.
CO2	Able to evaluate the student knowledge of production & cost estimation.
СО3	Able to introduce markets, theory of the firm and pricing policies in different markets.

Able to know the different forms of business organization and their merits and demerits of both CO4 public and private enterprises. RT22014 MEFA CO5 Able to understand the different accounting systems preparation of financial statements. Able to understand the concepts of capital, capitalization techniques used to evaluate capital CO6 budgeting. PO9 PO1 PO₂ **PO3 PO4 PO5 PO6 PO7 PO8** PO10 PO11 PO12 PSO₁ PSO₂ C01 2 2 3 3 3 2 C02 2 2 3 3 3 3 2 C03 2 2 3 3 3 2 2 3 2 CO4 3 3 C05 2 2 3 3 3 3 C06 2 2 3 3 3 2 1 Analyze Principal stresses and design the sections. CO1 CO2 Analyze the stresses and design of shafts and springs. CO3 Analyze the stresses in columns and struts subjected to different loading conditions. STRENGTH OF MATERIALS-CO4 Analyze direct and bending stresses and understand condition to avoid tension. Understand centroidal principal axes and Analysis of sections in unsymmetrical bending. CO5 RT22013 CO6 Analyze forces in different types of trusses used in construction. **PO1** PO₂ PO₃ PO4 **PO5 PO6 PO7 PO8** PO9 **PO10 PO11** PO12 PSO₁ PSO₂ C01 2 2 3 1 C02 2 2 2 1 2 2 C03 3 2 3 2 2 CO4 3 3 2 1 2 C05 2 1 1 2 C06 2 2 Student will be able to design and develop the empirical relationships involved in any Physical CO1 flow phenomenon in uniform open channel. Knowledge regarding various theories dealing with the flow phenomenon of fluid in a non CO2 Uniform open channel. ICS AND HYDRAULIC MACHINERY Ability to use dimensional analysis in solving fluid problems and plan hydraulic similitude CO3 Studies. CO4 Calculate forces and work done by a jet on fixed or moving plate and curved plates Student will be able to design various components of turbines and study their RT22012 CO5 Characteristics. Understanding of basics of the hydro-machinery and the components, function and use of CO6 Different types of pumps and their characteristics.

]		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
N	C01	2	2	2										2	1
¥	C02	2												2	2
	C03				2	2								2	
	CO4	2	2											2	
	C05	2	2	2										2	
	C06		2											2	

		CO1	Understand the basic ingredients of concrete and their role in the production of concrete.
		CO2	Test fresh concrete properties.
		CO3	Test hardened concrete properties.
	HNOLOGY	CO4	Understand the behavior of concrete in various environments.
τÚ	INC	CO5	Design concrete mix by BIS method.
RT22015	EC	CO6	Familiarize the basic concepts of special concrete and their production & applications.

- !	- 1															
	8															
	CONCRET		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
'	٦	C01	3		2	2			2				2	1		1
		C02	3	2	2	2							1	2	2	2
		C03	3	2	2	2							1	1	2	2
		CO4	2	2	1	2										
		C05	3	3	3	·			1				2	2	2	2
		C06	3		2				1				1	1	1	

		CO1	The student will be able to estimate the bending moment, shear force and deflections in Propped Cantilever beams.										
		CO2	The student will be able to estimate the bending moment, shear force and deflections in fixed beams. He will also be able to estimate the effects of sinking of supports and rotation of a supports.										
		соз	The student will be able to estimate the bending moment, shear force and deflections in Continuous beams of different support conditions using Clapeyron's theorem of three mome He will also be able to estimate the effect of sinking of supports. The student can analyze the continuous beams using the slope deflection method which important the student can analyze the continuous beams using the slope deflection method which important the student can analyze the continuous beams using the slope deflection method which important the student can analyze the continuous beams using the slope deflection method which important the student can analyze the continuous beams using the slope deflection method which important the student can analyze the continuous beams using the slope deflection method which important the student can analyze the continuous beams using the slope deflection method which important the slope deflection method which i										
9	ANALYSIS- 1	CO4	The student can analyze the continuous beams using the slope deflection method which impart basic concepts for other methods of analysis to be discussed in next level analysis courses.										
RT22016	URUAL	CO5	The student will be able to determine the shear force and bending moment in linear elastic systems using strain energy theorem. He will also be able to estimate the deflection in simple beams and pin jointed trusses using Castigliano's first theorem.										
	STRUCT	CO6	The student will be able to evaluate the maximum shear force and maximum bending moment in girders with and without using influence line diagrams. The student will also be able to analyze the Pratt and Warren trusses for moving loads.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2		1									2	
C02	3	2		1									2	
C03	3	2		1									2	
CO4	3	2		1									2	
C05	3	2		1									2	
C06	3	2		1									2	

CO1 Measure discharge in pipes
CO2 Efficiency of turbines
CO3 Efficiency of pumps
CO4 Measure discharge in Notches

FM & HM LAB

RT22018

2															
ð		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Ĕ	C01		2		2									2	
	C02		2		2										2
	C03		2		2										2
	CO4		2		2									2	

	CO1	Outline the importance of testing of cement and its properties. Prove good understanding of concepts and their applications in the lab.
	CO2	Make conventional and Portland cement mixtures and evaluate their fresh and hardened properties by determining the initial and final setting times of Portland cement.
	соз	Conduct lab experiments for determining the properties and the behavior of construction materials for the use in civil engineering construction
	CO4	Evaluate hardened properties of cement. Write the formal technical report & convey engineering message efficiently.
LAB	COS	Prepare concrete mixtures and evaluate their fresh and hardened properties. verify the assumptions made in the study of concept of workability and testing of concrete.
ַל	CO6	Describe the properties of hardened concrete. Analyze and interpret laboratory test results. Have experience in writing technical reports and making presentations

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	1	2		3					1	1		2	1	1
C02	1	2		3	1					1		2	1	1
C03		2		3	1					2		1	1	1
CO4	2	2	1	3	1					1		1	1	1
C05	2	3		3	2				2	2		2	2	2
C06	2	2		3	3					2		1	2	2

		Visualize the effect of loads and/or reactions, support displacements and temperature on the															
		C06	2	2													
		C05	3	3	2	3	2								2		
		CO4	2	3	2	2									2		
		C03	3	2	2		2								2		
	191	C02	3	2		2				\vdash					2		
×	ENGINEE	C01	PO1 2	PO2	PO3	PO4	PO5	PU6	PU/	804	PU9	PO10	PUII	PO12	PSO1	PSO	
(131014	RING		I pos	DO3	DO3	DO4	DOF	Lnos	l poz	DO9	DO0	DO10	DO11	DO12	DCO1	DCO	
174	RING GEOLOGY	CO6	10 sele	ect a su	itable sit	te for d	ams, res	ervoirs	and t	unnel	S						
	106	CO5			round co							ions					
	<u>></u>	CO4		•	tor and												
		соз	_		ne impo												
		CO2			tudy the							sical pro	perties	; 			
		CO1															
			Know the importance of geology in civil engineering														
		CO4	2				2	3		3	3	3	3	2	2	3	
		C03	2				2	3		3	3	2	3	2	3	3	
		C02	2				3	3		3	3	2	3	2	2		
	SU	C01	3				2	3		3	3	3	3	2	3	3	
	RVE		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	
KI 22019	SURVEYING FIELD WORK- 2																
ı.	LD W	CO4	Studen	it snoui	u be abi	ie to pre	epare pr	alis alic	пар	5							
	OR	CO3			d be abl						netno	as tor v	arious c	ivii eng	ineering	g pro	
	K- 2	CO2	techni	ques	d be abl												
		CO1	Studer	nt shoul	d be abl	le find t	he Eleva	ations, A	Areas	and v	olume	s by inc	direct m	ethods			

	CO1	Visualize the effect of loads and/or reactions, support displacements and temperature on the structural response of 3 and 2 hinged arches.
	CO2	Carryout lateral Load analysis of building frames for loadings using portal and cantilever methods.
	соз	Analyze Cable and Suspension Bridge structures
.YSIS- 2	CO4	Annotate different types of structures and their potential and analyze those structures using Moment Distribution method.

RT31012	JAL ANAL	CO5	1		the beha	avior of	continu	ious be	ams w	ith re	spect	to diffe	erent co	ndition	s and ar	nalyze
8	STRUCTURUAL ANAI	CO6		nethod			d Indete					•				using
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		C01	3	2	2							. 0 _ 0			3	
		C02	3	2	2	2		1						1	3	2
		C03	3	2	3	2		1						1	2	3
		CO4	2	2	2	2		1						1	2	2
		C05	3	2	1	1									3	1
		C06	3	2	1	1									1	1
RT31013	F REINFORCED CONCRETE STRUCTURES	CO2 CO3 CO4	Graduates will demonstrate the difference between the singly and doubly reinforced concrete beams and their way of design with suitability of adopting and their advantages and disadvantages one over the other. Analyse & design the sections for shear and torsion in simply supported, continuous beam & ability to prepare detailing charts with relevant IS code requirements. Design of compression members under various loadings with relevant IS code provisions. Apply the fundamental concepts, techniques in analysis and design of footing.													
	DESIGN AND DRAWING OF	CO6					the abili vantage	•				way an	ıd two v	way slat	o. Their	way of
	9		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	Ā	C01	3	3	2	2	1						1	2	3	2
	ig.	C02	3	3	3	3	1					2	3	1	3	2
	DES	C03	3	3	3	3	2					2	3	1	3	2
		CO4	3	3	3	3	2					2	3	1	3	2
		C05	3	3	3	3	1					2	3	1	3	2
		C06	3	3	3	3	1					2	3	1	3	2
		CO1	1				lefinition			•						

The student should be able to know the methods of determination of the various index properties of the soils and classify the soils.

The student should be able to permeability and seepage of behaviour of soil for field problems.

The student should be able to know the different methods of soil stresses distributing in to ground surface.

The student should be able to compute and analyze the consolidation settlements

The student should be able to apply and identify shear strength parameters of soil for field conditions.

וַנ															
1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
[C01	2	2		2										2
	C02	2	2		2										2
	C03	2	2		2									2	
	CO4	2	2		2									1	
	C05	2	2		2									2	2
	C06	2	2		2										2

	CO1	Plan highway network for a given area.
	CO2	Determine highway alignment and Design Highway geometrics
G- 1	CO3	Prepare traffic management plans and Design Intersections
ORTATION ENGINEERING-	CO4	Judge the suitability of pavement materials
ON ENG	CO5	Design Flexible & Rigid Pavements
ORTATI	CO6	Know the process of Construction & Maintenance of a Highway

RT31015

2 L															
֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
- [C01	2	2			2					2			2	
	C02	3	2	2	2						2			2	2
	C03	2	2	2		1								2	
	CO4				2										2
[C05	2	3		1									2	2
	C06	1													

CO1	Understand the basics of Intellectual Property rights
CO2	Compare and contrast the different forms of intellectual property protection in terms of their
COZ	key differences and similarities.

Assess and critique some basic theoretical justifications for each form of intellectual property protection

CO4 Identify activities and constitute IP infringements and the remedies available to the IP owner.

Recognize the crucial role of IP in different industrial sectors for the purposes of product and technology development

CO5 Analyze the effects of intellectual property rights on society as a whole.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01			2		1	1	2	3	2	1		1		
C02			1		1	1	1	2	2	1		1		
C03			1		1	1		1	1	1				
CO4			1		2	1		2	2	2		1		
C05			2		2	2	1	2	2	2		1	1	1
C06			3		1	1		3	1		1			

	ICO1	Determine differential free swell index of soil, Grain size distribution and classify them and specific gravity of soil.
	CO2	Determine Atterberg limits of soil.
1	соз	Determine Compaction characteristics of soil for both laboratory and Field point of view.
ш	CO4	Determine shear strength parameters of soil.
	CO5	Determine CBR value of soil.
	CO6	Determine permeability and Consolidation of soil.
	ENGINEERING LAB	CO2 CO3 CO4 CO5

Ē									_						
5		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	2	2		2					2	2			1	
J J	C01 C02	2	1		1						1				
	C03	2	1		2						2			2	1
	CO4	2	2		2						2			2	1
	C05	2	2		2						1			2	1
	C06	2	2		2						2			2	1

		CO1	Identify Mega-scopic minerals & their properties.
		CO2	Identify Mega-scopic rocks & their properties
	В	соз	Identify the site parameters such as contour, slope & aspect for
		CO4	Know the occurrence of materials using the strike & dip problems.
	OLOGY		
8	EOL		
T31018	G		
₹	NG N		

-	ERI		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	ENGINEER	C01	3			2					2	2				2
	NG	C02	3			2					2	2				2
	ш	C03	2	2		2	2					2			2	2
		CO4	3	2		3	1					3			2	2
			1													
			ļ													
		CO1	conne	ctions. (Gain bas	ic know	let / but /ledge o	f bolted	d and	rivete	d con	nection	S.		llet wel	ded
	RES	CO2	Analyz	e and d	lesign la	terally	supporte	ed / uns	uppo	rted b	eams	with de	etailing.			
	L STRUCTURES	соз	1 -	nents c			n membe Trusses		•			_		_		: IS
13	DESIGN AND DRAWING OF STEEL STRU	CO4	Design	Laced ,	/ Batten	ed Buil	t – up Co	olumns	and C	:olum	n Splic	es with	detaili	ng.		
RT32013	Analyze and design slab base / gusseted base column foundations with detailing															
Co6 Carryout analysis, design and detailing of Plate Girder and Gantry Girder.																
	JAL		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	IGN	C01	2	3										2	3	2
	DES	C02	2	3							\square	2			2	2
		C03	2	3	3							2			3	2
		CO4	2	3	2							2			2	2
		C05	2	3	2							2			2	2
		CUS		,												

CO2 Analyze infinite and finite slopes and their stability and estimation of earth pressures.

CO3 Understand types of shallow foundations and able to compute bearing capacities.

CO4 Compute the magnitude of foundation settlement and design based on settlement.

CO5 Analyze and design the piles on different soils.

CO6 Understand types of wells, components and able to Design and construction of wells.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	2								1				2
C02	2	2								1			2	
C03	2	2								1			2	2
CO4	3	2											2	1
C05	2	2								2			2	2
C06	2	2								2			2	

		CO1	Be able to quantify the major sources of precipitation and Develop Intensity – Duration- Frequency curve & Depth – Area Duration curves and carry out rainfall frequency analysis
		CO2	Be able to quantify various abstractions and apply the concepts to several practical areas of engineering hydrology
	RING-1	соз	Be able to quantify the runoff and Develop Unit Hydrographs and Synthetic Unit Hydrograph
4	ENGINEERING	CO4	Be able to estimate flood magnitude and carry out flood routing
RT32014	URCES	CO5	Be able to determine aquifer parameters and yield of wells
	~	CO6	Be able to model hydrologic processes
	ER		

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C	01	3	3											1	
C	:02	3	2	2										1	
C	:03	3	3	2											
C	04	3	3	2											
C	:05	3	3												

							ı	Ī					1 1	ı .			
		C06	3	2	1												
		CO1	Dlana	nd desi	an the v	vater ar	nd distri	hution	netwo	rks a	nd sav	υργασο (cyctame	-			
			+														
	Characterization of water																
CO4 Select the appropriate appurtenances in the water supply. CO5 Selection of suitable treatment flow for raw water treatments																	
	ER											ıts					
	NIS	CO6											svstem	S.			
011	ENG				0								,				
RT32011	FAL		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
Ъ.	ENJ	C01	3	2											2		
	ΣN	C02	2	3	3										2	2	
	IRO	C03	1	3													
	N	CO4	1	2	3				1						2		
	ш	C05	2	3											2		
		C06	2	2	3		2								2	2	
		CO1		Inderstand the Function of various components of railway track													
			+														
	Apply existing technologies to design, construction, and maintenance of railway physical facilities.																
racilities.																	
Understand the classification of signals and preparation of traffic management p											ent plar	ıs.					
	NE	CO4	Apply	design	principl	es of air	rport ge	ometrio	s and	pave	ments	•					
15	NGI								_								
RT32015	NE	CO5	Desig	n flexib	le, rigid	pavem	ent and	sub-sui	face (draina	ge.						
RT	TIO	CO6	Unde	rstand t	he princ	iples of	plannin	ig, cons	tructi	on an	d maiı	ntenano	e of Do	cks and	l harboı	ırs.	
			1		•	•	·	<u> </u>									
	TRANSPORT		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	AN	C01	2														
	TR	C02	3	3	2										3	2	
		C03	3		3	2	3	2		2	2				2	2	
		CO4	2	2	2	2	2		2						2	2	
		C05	2	3	3	2	2								3	2	
		C06	2				2										
		1															
		CO1	Solve simple boundary value problems using Numerical technique of Finite element method														
		CO2	Develo	p finite	elemer	nt formu	ulation c	of one a	nd tw	o dim	ensio	nal prol	olems a	nd solv	e them		
		CO3	As	ssemble	Stiffne	ss matri	ices, App	oly bou	ndarv	condi	itions	and sol	ve for tl	he displ	acemer	nts	
							, , ,										
		CO4	Compi	ute Stre	sses and	d Strain:	s and int	terpret	the re	esult.							
	OD							-									

Understand the application of Iso-Parametric formulation

CO6 Learn finite element modeling techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2		2									3	1
C02	3	2		2									2	1
C03	3	2		2									2	1
CO4	2	2		2									2	1
C05	2	2		2									2	1
C06	2	2		2									1	1

		CO1	Pogular Solids
		CO2	Will be able to draw Isometric views for simple and compounds solids, and projection of
	LAB	CO3	Will be able to draw perspective view of plane figures and simple solids
	9	CO4	Will be able to use the draw and modify commands in Auto CAD to create 2D and 3D wire frame modelling
		CO5	Will be able to use the different view ports option in the Auto CAD software
RT32017	ENGINEERING	CO6	Will be able to draw isometric and orthographic projection of isometric projects using Auto CAD

. I М															
AID		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1				2				1	2			2	2
UTER	C02	1				2				1	2			2	2
COMP	C03	1				2				1	2			2	2
8	C04	1				2				1	2			2	2
	C05	1				2				1	2			2	2
	C06	1				3				1	2			2	2

		CO1	Characterize the pavement materials
		CO2	Perform quality control tests on pavements and pavement materials
	NG LAB	CO3	Conduct traffic studies for estimating traffic flow characteristics
	ERII	CO4	Estimate earth work from longitudinal and cross-section details
RT32018	ENGINEERING	CO5	Design grade intersections
32(
₩	TION		

RTA		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
<u>B</u>	C01	1	2		2	2									
SN	C02				3	2									2
₩	C03	2	2		2	1	2								
l'	C04	2	1		2	2	1								2
	C05	2	2		3	2	1								1

	CO1	Able to proposal of system of sanitation and type of sewerage system for different towns/cities.
	CO2	Plan and layout of sewerage system.
2.5		Select appropriate sewer appurtenances in sewerage system.
FNGINFERING	CO4	Characterization of sewage generated from various sources.
	. I	Propose suitable sewage treatment units for the treatment of sewage and layout of sewage treatment plant.
ONMENTAL	CO6	Characterization, handling and treatment of sewage sludge and its disposal.
	· -	·

RT41011

&															
EN		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	2	1											3	
	C02	2	2				2	2							2
	C03	2	2					2							
	C04	1	2		2										3
	C05		3	2			1	1						2	
	C06	2	2			·		1						3	

		CO1	Be able to understand the various terminology and requirements for prestressed concrete
		CO2	Understand different methods of prestressing and analysing the section under loading condition
			Estimate the effective prestress including the short and long term losses
	₹ETE	CO4	Analyze and design of prestressed concrete beams under flexure
12	CONCF		Analyze and design of prestressed concrete members under shear and torsion
RT41012	ESTRESSED	CO6	Be able to understand the transfer of presterss pre-tensioning and post tensioning members

PRE															
-		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	2	1										1		2
	C02	3									2			2	1
	C03	3	3		1						1			2	1
	C04	3	3	2	1	2			1	1	3	1	1	1	2
	C05	3	3	2	1	2			1	1	3	1	1	1	2
	C06	3	2	1	1	2			1	1		1	1	1	2

		CO1	To appreciate the importance of construction planning.
	GEMENT	CO2	To understand the concepts of CPM & PERT.
	GE	соз	To understand the functioning of Earth moving equipments.
	D MANA	CO4	To understand the types of Earth moving equipments.
RT41013	CHNOLOGY ANI	CO5	To know the methods of production of aggregate products and concreting.
RT/	TECHNO	CO6	To apply the knowledge to project management & construction techniques.
1	-		

₹		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	C01	2										3			
ST	C02	2			2	2				2	3	3		2	2
	C03	2				2						2			2
	C04	2				2						2			2
	C05	2				2						2			2
	C06	2										2		2	2

CO1	Be able to estimate irrigation water requirements
-----	---

WATER RESOURCES ENGINEERING -2 CO2 Design irrigation canals and canal network Be able to learn Design principals of different irrigation canal structures CO3 CO4 Be able to determine storage capacity and life of reservoir CO5 Analyse stability of gravity and earth dams RT41014 CO6 Be able to learn Design principals of ogee spillways and energy dissipation works **PO1** PO₂ **PO3 PO4 PO5 PO6 PO7** PO8 PO9 PO10 PO11 **PO12** PSO₁ PSO₂ C01 3 2 1 2 2 C02 2 2 3 2 1 1 2 2 C03 3 2 2 2 3 1 1 2 C04 2 2 2 2 2 1 1 1 C05 3 2 1 1 3 3 **C06** 3 2 1 1 2 2 Understand the fundamental concepts of remote sensing and be familiar with ground, air and CO1 satellite based sensor platforms. CO2 Interpretation of satellite images visually and with help of digital image processing techniques. CO3 Understand the basic components of GIS. CO4 Create and input spatial data for GIS application. CO5 Apply RS and GIS concepts in different fields of civil engineering. **3T41015** RS&GIS CO6 Apply RS and GIS concepts in water resources engineering. PO1 PO₂ **PO3 PO4** PO7 PO8 PO9 PO10 PO11 PO12 PSO₁ PSO₂ **PO5 PO6** C01 2 C02 2 3 2 C03 C04 2 C05 3 3 3 2 2 2 C06 3 3 2 2 2 CO1 To identify the structure is determinate or indeterminate To identify suitable element stiffness matrix for a structural problem CO2 To perform analysis of continues beams using the stiffness method. CO3 To perform analysis multiple degree of freedom two dimensional problems using the stiffness CO4 method. CO5 To find technique for reducing bandwidth for global stiffness method RT41016 MMSA To perform analysis multiple degree of freedom three dimensional problems using the stiffness

CO6

method.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2											1	
C02	3	3	1		1								2	
C03	3	3		2						2		1	1	
C04	3	3		2						2		1	1	
C05	2	2		2	2								1	
C06	2	3		2						2		1	1	

		CO1	Estimation of some important characteristics of water and wastewater in the laboratory
	ø	CO2	Draw some conclusion and decide whether the water is potable or not.
	≥	соз	Decide whether the water body is polluted or not with reference to the state
RT41017	ENGINEER	CO4	Estimation of the strength of the sewage in terms of BOD and COD
T4	IAL		
-	N.		

🔚															
Σ															
IRONME		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	3	2		2	2									2
	C02	2	2		3		2				2		2		2
	C03	2	2		2		2				2		2		2
	C04	2			2	2									2

		CO1	Work comfortably on GIS software
		CO2	Digitize & create thematic map and extract important features
		CO3	To analyse and design of 2D and 3D frames.
		CO4	To analyse and design retaining wall and simple towers
RT41018	CAD LAB		
RT4	GIS &		
)		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2				2				2					
C02	3				2				2				1	

	C03	3	1	1	3	3					3			3	3	
	C04	3	1	1	3	3					3			3	3	
					•		•	•								
															-	
								\vdash							\vdash	
								t								
_					-	-	-	=					-	_	-	
	CO1	Be able to understand the principle of working out of quantities and apply the concepts in the practical areas and able to estimate the quantities of various items of work														
S	CO2	Be abl	Be able to analyze the rate for various items of work													
		Be able to estimate the earthwork for road, canal works and quantity of reinforcement and provide bar bending schedules														
NTRAC	соз						or road,	canal	work	s and	quantit	y of rei	nforcen	nent and	d	
AND CONTRAC	CO3	provid	e bar b		chedul	es				s and	quantit	y of rei	nforcen	nent and	d	
IONS AND CONTRACTS	· F	provid Be abl	e bar be	ending s	d in det	es ail abou	t the co	ontrac	ts		quantit	y of rei	nforcen	nent and	d	
l vo	· F	Be able	e bar beeto und	ending s	d in det	es ail abou rform va	t the co	ontrac	ts ouildii	ng						
l vo	· F	Be able	e to und	derstand	d in det	es ail abou rform va	t the co	ontrac	ts ouildii	ng						
lσ	· F	Be able	e to und	derstand	d in det	es ail abou rform va	t the co	ontrac	ts ouildir a buil	ng ding u	sing bo			all and (
lσ	· F	Be able Should Be able line me	e to und d be in a e to est ethods	derstand a positio imate th	d in det	es ail abou rform va us item	t the co	ontrac n of a l rks in	ts ouildir a buil	ng ding u	sing bo	th indiv	ridual w	all and (centre	
l vo	· F	Be able Be able line me	e to und d be in a e to est ethods	derstand a positio imate th	d in det	es ail abou rform va	t the co	ontrac n of a l rks in	ts ouildir a buil	ng ding u	sing bo	th indiv	ridual w	all and (centre PSO2	
S	· F	Be able line me	e to und d be in a e to est ethods PO2 1	derstand a positio imate th	d in det	es ail abour rform var ous items	t the co	ontrac n of a l rks in	ts ouildir a buil	ng ding u	sing bo	th indiv	ridual w	all and (centre PSO2	
l vo	CO5 CO6 CO1 CO2	Be abluline me	e to und d be in a e to est ethods PO2 1	derstand a positio imate th	d in det	es ail abour rform var us items	t the co	ontrac n of a l rks in	ts puildin a buil PO8	ng ding u	PO10 1 2	th indiv	ridual w	all and (PSO2	
l vo	CO5 CO6 CO1 CO2 CO3	Be able line me	e to und d be in a e to est ethods PO2 1	derstand a positio imate th	d in det	rform valus items	t the co	ontrac n of a l rks in	puilding post	ng ding u	PO10 1 2 2	th indiv	ridual w	all and o	PSO2	
l vo	CO5 CO6 CO1 CO2 CO3 CO4	Be able line me	e to und d be in a e to est ethods PO2 1	derstand a positio imate th	d in det	rform valus items PO5 1 1 1 2	t the co	ontrac n of a l rks in	positis PO8 1 1 1	ng ding u	PO10 1 2 2 3	PO11	ridual w	all and o	PSO2 1 1 2	
l vo	CO5 CO6 CO1 CO2 CO3 CO4 CO5	Be abluline model in a second	e to und d be in a e to est ethods PO2 1	derstand a positio imate th	d in det	rform valus items PO5 1 1 2 2	t the co	ontrac n of a l rks in	PO8 1 1 1 1	ng ding u	PO10 1 2 2 3 2	PO11	ridual w	PSO1	PSO2 1 1 2 1	
l vo	CO5 CO6 CO1 CO2 CO3 CO4 CO5	Be able line me	e to und d be in a e to est ethods PO2 1 1	derstand a positio imate th	n to pene vario	rform valus items PO5 1 1 2 2 2	t the co	ontrac n of a l rks in	PO8 1 1 1 1	ng ding u	PO10 1 2 2 3 2	PO11	ridual w	PSO1	PSO2 1 1 2 1	
l vo	CO5 CO6 CO1 CO2 CO3 CO4 CO5 CO6	Be able line me	e to und d be in a e to est ethods PO2 1 1	derstand a positio imate th	n to per ne vario	rform valus items PO5 1 1 2 2 2 port	t the co	ontrac of a larks in	PO8 1 1 1 1	ng ding u	PO10 1 2 3 2	PO11 1 1	PO12	PSO1	PSO2 1 1 2 1	

	соз	Evalua	ation of	the EIA	report a	and Estir	mate th	e cost	t bene	efit rat	io of a	project					
	CO4	Know	the role	e of stak	eholder	and pu	blic hea	ring i	n the	prepa	ration c	of EIA					
	CO5			wledge a with app			•				ıl impac	t mode	ling and	d predic	tion a		
N142022	CO6	l l	Perform the screening and scoping of an EIA, based on existing requirements, evaluate the impacts and draw meaningful conclusions from the results of the EIA														
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO:		
	C01	2	1	1		1				1				1			
	C02	3	1	2		3			1	1			1		1		
	C03	2		2	1	2			1					1	2		
	C04	1		2	2	1			1		1	1			1		
	C05	2	1	1	1	2		1	2	2	2	1	2	2	2		
	C06	2	1	1	1	2		1	1	2	2	1		1	1		
	CO1		Understand the fundamentals of engineering seismology.														
	CO2	Acqua	int with	the pri	nciples	in struct	ural dy	namic	:S.								
	соз	Under	stand t	he SDOF	system	ıs.											
	CO4	Comp	ute equ	ivalent l	ateral s	eismic l	oads.										
2 2	CO5	To sug	ggest du	ıctile de:	sign for	beams a	and col	umns.									
7907	C06	To car	ry out a	seismic	design	as per I	S codal	provi	sions.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	1	2												
C02	2	2		1										1
C03	3	3	1	2						2	1		1	1
C04	3	3	1							1			2	2
C05	2	1	3							3	1	1	2	2
C06	3	3	3	3	1				1	2	3	1	3	2

CO1	Student will be able to know various distress and damage to concrete and masonry structures and their preventive measures including cracks.
CO2	Student will be able to Carry out analysis using various NDT methods and evaluate structures.
соз	Student will be able to investigate failures and also the causes of failures in structures and repair of cracks.
CO4	Student will be able to recognize the types and properties of repair materials etc, and their influence on concrete

24		ICO5	Student will be able to assessing damage to structures and various repair techniques including equipments and precautions.
RT420	RRS	ICO6	Student will be able to know various case studies regarding rehabilitation of various civil engineering structures.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	1	1		2				1					
C02	3	1	2		3	1			1					1
C03	2	2	2	1	2									3
C04	3		2	2	2					1	1			1
C05	2	1	1	1	2	2	1		2	2	1		2	2
C06	2	1	1	1	2	2	1		2	2	1		2	2

		CO1	Apply all levels of engineering knowledge in solving the Engineering problems.
		CO2	Apply appropriate techniques, resources & modern engineering tools.
		соз	Work together with team spirit.
		CO4	Recognize the need for further knowledge & lifelong learning.
025	ECT	CO5	The skill to prepare a Project report.
RT42025	PROJECT		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2	3	3	2	2		3	2			3	3
C02	3	3	2	2	3						3	2	2	2
C03								3	3	2	2	2	2	2
C04	2	2		2	2	2	2	2		2		3		2
C05	2	2			2		2		3	3	2	1	2	2

PSO3

PSO3

1

1

PSO3 1

PSO3
1

shes

PSO3	
2	
2	
2	
2	
2	

PSO3

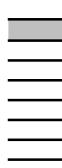
PSO3

2

2

PSO3

PSO3	
1	
1	


PSO3

PSO3
2
2
3
3

PSO3	
1	
2	
2	
2	

PSO3
1

PSO3
2
2
2

PSO3

2

PSO3	
2	
2	
1	
1	
1	
1	

PSO3
1

PSO3	
2	
2	
2	
2	

2

2
1

PSO3			
	1		
	2		
	2		

PSO3				
	<u> </u>			

PSO3

PSO3	
1	
1	
1	۰

PSO3	
1	
1	
1	Ī

PSO3	
2	
2	
2	
2	
2	